博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
MySQL 聊聊MySQL锁机制及事务
阅读量:2453 次
发布时间:2019-05-10

本文共 4429 字,大约阅读时间需要 14 分钟。

锁机制

锁是计算机协调多个进程或线程并发访问某一资源的机制。 在数据库中,除传统的计算资源( 如CPU、RAM、 I/O等) 的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。

分类

  1. 从数据操作的类型(读、写)分

    • 读锁(共享锁):针对同一份数据,多个读操作可以同时进行而不会互相影响

    • 写锁(排它锁):当前写操作没有完成前,它会阻断其他写锁和读锁。

  2. 从对数据操作的颗粒度

    • 表锁

    • 行锁

表锁(偏读)

特点

偏向MyISAM存储引擎,开销小,加锁快,无死锁,锁定粒度大,发生锁冲突的概率最高,并发最低

加读锁

1.创建表

注意:使用MyISAM存储引擎

随便插入一些数据.....

2.加读锁

lock table 表名 [read | write],表名2 [read | write],其他;

3.在当前连接中尝试执行SQL

读取锁定表:

修改锁定表:

读取其他表:

4.创建新的连接会话,原会话不关闭。尝试执行SQL

读取锁定表:

修改锁定表:

处于阻塞状态,当加锁会话释放锁后阻塞SQL将被执行。

使用 unlock tables; 命令释放锁后:

读取其他表:

会话 加锁 结论
Session1 可以读加锁的表 不能写加锁的表 不能读其他表
Session2 × 可以读加锁的表 可以写加锁的表(阻塞状态,释放锁后提交修改) 可以读其他表

加写锁

1.同样的表结构。

2.加写锁

3. 在当前连接中尝试执行SQL

读取锁定表:

修改锁定表:

读取其他表:

4.创建新的连接会话,原会话不关闭。尝试执行SQL

读取锁定表:

处于阻塞状态,当加锁会话释放锁后阻塞SQL将被执行。

修改锁定表:

处于阻塞状态,当加锁会话释放锁后阻塞SQL将被执行。

读取其他表:

会话 加锁 结论
Session1 可以读加锁的表 可以写加锁的表 不能读其他表
Session2 × 可以读加锁的表(阻塞状态,释放锁后可以读) 不能写加锁的表 可以读其他表

总结

MyISAM在执行查询语句(SELECT) 前,会自动给涉及的所有表加读锁,在执行增删改操作前,会自动给涉及的表加写锁。

MySQL的表级锁有两种模式: 表共享读锁(Table Read Lock) 表独占写锁(Table Write Lock)

锁类型 可否兼容 读锁 写锁
读锁

结合上表,所以对MyISAM表进行操作,会有以下情况: 1、对MyISAM表的读操作(加读锁),不会阻塞其他进程对同一表的读请求,但会阻塞对同一表的写请求。只有当读锁释放后,才会执行其它进程的写操作。 2、对MyISAM表的写操作(加写锁),会阻塞其他进程对同一表的读和写操作,只有当写锁释放后,才会执行其它进程的读写操作。

简而言之,就是读锁会阻塞写,但是不会堵塞读。而写锁则会把读和写都堵塞。

此外,Myisam的读写锁调度是写优先,这也是myisam不适合做写为主表的引擎。因为写锁后,其他线程不能做任何操作,大量的更新会使查询很难得到锁,从而造成永远阻塞

行锁(偏写)

特点

偏向InnoDB存储引擎,开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。

InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁

数据库事务(ACID)

事务是由一组SQL语句组成的逻辑处理单元,事务具有以下4个属性,通常简称为事务的ACID属性。

  • 原子性(Atomicity) :事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。

  • 一致性(Consistent) :在事务开始和完成时,数据都必须保持一 致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以保持数据的完整性;事务结束时,所有的内部数据结构(如B树索引或双向链表)也都必须是正确的。

  • 隔离性(Isolation) :数据库系统提供-定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。

  • 持久性(Durable) :事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。

事务导致的问题

更新丢失(Lost update)

当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会发生丢失更新问题一一最后的更新覆盖了由其他事务所做的更新。

例如,两个程序员修改同一java文件。每程序员独立地更改其副本,然后保存更改后的副本,这样就覆盖了原始文档。最后保存其更改副本的编辑人员覆盖前一个程序员所做的更改。

如果在一个程序员完成并提交事务之前,另一个程序员不能访问同一文件,则可避免此问题。

脏读(Dirty)

一个事务正在对一条记录做修改,在这个事务完成并提交前,这条记录的数据就处于不一致状态;这时,另一个事务也来读取同一条记录,如果不加控制,第二个事务读取了这些“脏”数据,并据此做进一步的处理, 就会产生未提交的数据依赖关系。这种现象被形象地叫做”脏读”。

一句话:事务A读取到了事务B已修改但尚未提交的的数据,还在这个数据基础上做了操作。此时,如果B事务回滚,A读取的数据无效,不符合一致性要求。

不可重复读(Non-Repeatable Reads)

一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变、或某些记录已经被删除了!这种现象就叫做“不可重复读”。

一句话:事务A读取到了事务B已经提交的修改数据,不符合隔离性

幻读(Phantom Reads)

一个事务按相同的查询条件重新读取以前检索过的数据,却发现其他事务插入了满足其查询条件的新数据,这种现象就称为“ 幻读。

一句话:事务A读取到了事务B体提交的新增数据,不符合隔离性。

多说一句:幻读和脏读有点类似:

脏读是事务B里面修改了数据, 幻读是事务B里面新增了数据。

事务隔离级别

脏读”、“不可重复读”和“幻读”,其实都是数据库读一致性问题,必须由数据库提供一定的事务隔离机制来解决。

读数据一致性及允许的并发副作用 隔离级别 读写一致性 脏读 不可重复读 幻读
未提交读(Read uncommitted) 最低级别,只能保证不读取物理上损坏的数据
已提交读(Read committed) 语句级
可重复读(Repeatable read) 事务级
可序列化(Serializable) 最高级别,事务级

数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上“串行化”进行,这显然与“并发”是矛盾的。同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。

案例分析

创建表

伪造一些假数据.....

关闭MySQL自动提交

set autocommit = 0;

session1更新,session2查询

两边都执行commit后,查到的都是最新的数据

session1和session同时更新同一行

session2进入阻塞状态。当session1执行commit后,session2阻塞状态解除。两边再次执行commit后,数据一致。

session1和session同时更新不同行

不会出现阻塞现象,两边同时commit后,数据一致。

行锁升级表锁

varchar类型 不用 ' ' 导致系统自动转换类型, 行锁变表锁

间隙锁

当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给 符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)” 。

InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁) 。

危害

因为Query执行过程中通过过范围查找的话,他会锁定整个范围内所有的索引键值,即使这个键值并不存在。 间隙锁有一个比较致命的弱点,就是当锁定一个范围键值之后, 即使某些不存在的键值也会被无辜的锁定,而造成在锁定的时候无法插入锁定键值范围内的任何数据。在某些场景下这可能会对性能造成很大的危害。

session1 执行SQL update test_innodb_lock set b = 'tt' where id>1 AND id<6;

session2 执行SQL insert into test_innodb_lock values(2,2000);

总结

Innodb存储引擎由于案现了行级锁定,虽然在锁定机制的实现方面所带来的性能损耗可能比表级锁定会要更高-些,但是在整体并发处理能力方面要远远优于MyISAM的表级锁定的。当系统并发量较高的时候,Innodb的整体性能和MyISAM相比就会有比较明显的优势了。

但是,Innodb的行级锁定同样也有其脆弱的一面,当我们使用不当的时候,可能会让Innodb的整体性能表现不仅不能比MyISAM高,甚至可能会更差。

行锁分析

通过检查InnoDB_row_lock状态变量来分析系统上的行锁的争夺情况

show status like 'innodb_row_lock%'

 

参数解释:

Innodb_row_lock_current_waits: 当前正在等待锁定的数量; Innodb_row_lock_time: 从系统启动到现在锁定总时间长度; Innodb_row_lock_time_avg: 每次等待所花平均时间; Innodb_row_lock_time_max: 从系统启动到现在等待最常的一次所花的时间; Innodb_row_lock_waits: 系统启动后到现在总共等待的次数;

对于这5个状态变量,比较重要的主要是:

Innodb_row_lock_time_avg ( 等待平均时长) Innodb_row_lock_waits (等待总次数) Innodb_row_lock_time(等待总时长)

尤其是当等待次数很高,而且每次等待时长也不小的时候,我们就需要分析系统中为什么会有如此多的等待,然后根据分析结果着手指定优化计划。

建议

  • 尽可能让所有数据检索都通过索引来完成,避免无索引行锁升级为表锁

  • 合理设计索引,尽量缩小锁的范围

  • 尽可能较少检索条件,避免间隙锁

  • 尽量控制事务大小,减少锁定资源量和时间长度

  • 尽可能低级别事务隔离

转载地址:http://iqbhb.baihongyu.com/

你可能感兴趣的文章
sdlc 瀑布式 生命周期_SDLC指南–软件开发生命周期的阶段和方法
查看>>
大omega记号_什么是大欧米茄符号?
查看>>
react 使用 mobx_如何使用React和MobX状态树构建基于状态的路由器
查看>>
移动认证_如何在移动设备上实施安全的生物特征认证
查看>>
敏捷开发创始人_开发人员和技术创始人如何将他们的想法转化为UI设计
查看>>
node aws 内存溢出_在AWS Elastic Beanstalk上运行生产Node应用程序的现实
查看>>
我如何在昌迪加尔大学中心组织Google Hash Code 2019
查看>>
子集和与一个整数相等算法_背包问题的一个变体:如何解决Java中的分区相等子集和问题...
查看>>
aws中部署防火墙_如何在AWS中设置自动部署
查看>>
typescript_如何掌握高级TypeScript模式
查看>>
golang底层深入_带有Golang的GraphQL:从基础到高级的深入研究
查看>>
如何选择正确的容器编排以及如何进行部署
查看>>
出现字迹模糊迹象_改变迹象:如何使用动态编程解决竞争性编程问题
查看>>
angular 渐进_如何创建具有Angular和无头CMS的渐进式Web应用程序
查看>>
Dash的快速入门将使您在5分钟内进入“ Hello World”
查看>>
cake php_如何(以及为什么)在Swinject中使用Cake Pattern
查看>>
用户体验改善案例_用户体验案例研究:建立更好的体验(重新设计“和平航空”网站)...
查看>>
nginx mozilla_我发现Mozilla的私人浏览模式存在重大缺陷。
查看>>
databricks_如何开始使用Databricks
查看>>
盖茨比乔布斯_如何使用盖茨比创建您的博客并通过手机进行处理
查看>>